DS1 spectrogram: Agentic Test-Time Scaling for WebAgents

Agentic Test-Time Scaling for WebAgents

February 12, 20262602.12276

Authors

Amir Gholami,Nicholas Lee,Lutfi Eren Erdogan,Chris Joseph John,Surya Krishnapillai

Abstract

Test-time scaling has become a standard way to improve performance and boost reliability of neural network models. However, its behavior on agentic, multi-step tasks remains less well-understood: small per-step errors can compound over long horizons; and we find that naive policies that uniformly increase sampling show diminishing returns.

In this work, we present CATTS, a simple technique for dynamically allocating compute for multi-step agents. We first conduct an empirical study of inference-time scaling for web agents.

We find that uniformly increasing per-step compute quickly saturates in long-horizon environments. We then investigate stronger aggregation strategies, including an LLM-based Arbiter that can outperform naive voting, but that can overrule high-consensus decisions.

We show that uncertainty statistics derived from the agent's own vote distribution (entropy and top-1/top-2 margin) correlate with downstream success and provide a practical signal for dynamic compute allocation. Based on these findings, we introduce Confidence-Aware Test-Time Scaling (CATTS), which uses vote-derived uncertainty to allocate compute only when decisions are genuinely contentious.

CATTS improves performance on WebArena-Lite and GoBrowse by up to 9.1% over React while using up to 2.3x fewer tokens than uniform scaling, providing both efficiency gains and an interpretable decision rule.

Resources

Stay in the loop

Get tldr.takara.ai to Your Email, Everyday.

tldr.takara.aiHome·Daily at 6am UTC·© 2026 takara.ai Ltd

Content is sourced from third-party publications.